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ABSTRACT
Background: Mitochondrial dysfunction is an important component
of the aging process and has been implicated in the development
of many human diseases. Mitochondrial DNA copy number (mtD-
NAcn), an indirect biomarker of mitochondrial function, is sensitive
to oxidative damage. Few population-based studies have investigated
the impact of fruit and vegetable consumption and cigarette smoke (2
major sources of exogenous antioxidants and oxidants) on leukocyte
mtDNAcn.
Objectives: We investigated the association between fruit and
vegetable consumption, cigarette smoke, and leukocyte mtDNAcn
based on data from the Nurses’ Health Study (NHS).
Methods: Data from 2769 disease-free women in the NHS were used
to examine the cross-sectional associations between dietary sources
of antioxidants, cigarette smoke, and leukocyte mtDNAcn. In vitro
cell-based experiments were conducted to support the findings from
the population-based study.
Results: In the multivariable-adjusted model, both whole-fruit
consumption and intake of flavanones (a group of antioxidants
abundant in fruit) were positively associated with leukocyte mtD-
NAcn (P-trend = 0.005 and 0.02, respectively), whereas pack-years
of smoking and smoking duration were inversely associated with
leukocyte mtDNAcn (P-trend = 0.01 and 0.007, respectively). These
findings are supported by in vitro cell-based experiments showing
that the administration of naringin, a major flavanone in fruit, led
to a substantial increase in mtDNAcn in human leukocytes, whereas
exposure to nicotine-derived nitrosamine ketone, a key carcinogenic
ingredient of cigarette smoke, resulted in a significant decrease in
mtDNAcn of cells (all P < 0.05). Further in vitro studies showed
that alterations in leukocyte mtDNAcn were functionally linked to
the modulation of mitochondrial biogenesis and function.
Conclusions: Fruit consumption and intake of dietary flavanones
were associated with increased leukocyte mtDNAcn, whereas
cigarette smoking was associated with decreased leukocyte mtD-
NAcn, which is a promising biomarker for oxidative stress–related
health outcomes. Am J Clin Nutr 2019;109:424–432.
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Introduction
Oxidative stress reflects a state of physiologic imbalance

between production of reactive oxygen species (ROS) and a
biological system’s antioxidant defense to repair the resulting
damage (1). Mitochondria are intracellular organelles in the
cytoplasm of eukaryotic organisms with a number of func-
tions, including energy metabolism, free-radical production, and
apoptosis (2). Mitochondrial DNA (mtDNA) is known to be
more sensitive to oxidative damage than nuclear DNA due
to its lack of protective histones, introns, and efficient DNA
repair mechanisms. Increased oxidative stress may contribute to
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alterations in the copy number and integrity of mtDNA in human
cells (3–7).

Within a certain level, ROS may induce stress responses
by altering the expression of specific nuclear genes in order
to uphold the energy metabolism to rescue the cell. Once
beyond the threshold, ROS may cause oxidative damage to
the mtDNA of the affected cells (8). In contrast, antioxidants
have been shown to reduce mitochondrial damage and increase
mitochondrial biogenesis and mtDNA copy number (mtDNAcn)
(9, 10). Both mitochondrial structural and functional alterations
have been implicated in the pathogenesis of human diseases,
including premature aging, cardiovascular disease, diabetes, and
neurodegenerative disease (1, 11–15). Epidemiologic studies
have linked reduced leukocyte mtDNAcn with a range of adverse
clinical outcomes, including all-cause mortality, coronary heart
disease and sudden cardiac death, metabolic syndrome, and
chronic kidney disease (16–20). Therefore, mtDNAcn may serve
as a promising biomarker for oxidative stress–related health
outcomes.

Although alterations in leukocyte mtDNAcn have been
associated with several environmental and lifestyle factors,
including plasma antioxidants and pro-oxidants (21) and BMI
and weight change (22), the spectrum of factors that affect
mtDNAcn is not fully understood. In particular, few population-
based studies to date have investigated in detail the impact
of fruit and vegetable consumption and cigarette smoke on
leukocyte mtDNAcn. Because fruit and vegetable consumption
and smoking are major sources of exogenous antioxidants (e.g.,
flavonoids, vitamin C) and oxidants, respectively (23–26), we
hypothesized that 1) fruit and vegetable consumption would
be associated with higher leukocyte mtDNAcn and 2) cigarette
smoking would be associated with lower leukocyte mtDNAcn.
In particular, flavonoids are a group of phytochemicals (e.g.,
flavanonols, flavones, flavanones, flavan-3-ols, anthocyanidins)
with antioxidant properties (25, 27). To address the questions
of interest, we investigated the associations between fruit and
vegetables, dietary antioxidants, cigarette smoke, and leukocyte
mtDNAcn using data on 2769 healthy women from the Nurses’
Health Study (NHS).

We sought to find evidence to support the above population-
based findings using in vitro cell-based experimental models:
exposing human peripheral blood–derived leukocytes to naringin,
a major flavanone in citrus fruit, and 4-(methylnitrosamino)-
1-(3-pyridyl)-1-butanone [nicotine-derived nitrosamine ketone
(NNK)], a key ingredient of cigarette smoke, which are
representative active components of such exogenous antioxidants
and oxidants. We considered cellular ROS as a potential candidate
to link environmental factors and mtDNAcn, because mtDNAcn
is closely associated with cellular ROS and redox status (3–5, 9,
10, 21) and fruit consumption and cigarette smoke are considered
to be the primary sources of exogenous antioxidants and oxidants,
respectively, which ultimately contribute to alterations in cellular
ROS generation and redox potential (23–25).

Methods

Study population

Our study was designed as a cross-sectional study based
on the NHS, established in 1976 when 121,700 registered

nurses aged 30–50 y residing in 11 US states completed a
baseline questionnaire related to risk factors for cardiovascular
disease and cancer and thereafter have been updating their
information on environmental and lifestyle factors and medical
history biennially. Between 1989 and 1990, blood samples were
collected from 32,826 members of the NHS. Women who
provided blood samples were similar demographically to those
who did not (28). In this study, we included controls (n = 2769)
from 3 nested case-control studies for lung cancer (n = 321), skin
cancer (including basal cell carcinoma, squamous cell carcinoma,
and melanoma; n = 1385), and colorectal cancer (n = 1063) from
the NHS (22, 29, 30). A flow chart for derivation of the study
population is shown in Supplemental Figure 1. All participants
are Caucasian women with both dietary intake and smoking
information at blood collection. The institutional review board
of Brigham and Women’s Hospital approved this study.

Assessment of dietary factors, smoking, and other covariates
in the NHS

A detailed description is provided in Supplemental Methods.
Briefly, dietary data assessed using a validated food-frequency
questionnaire (FFQ) were derived from the questionnaire ad-
ministered in 1990, with missing information substituted from
the 1986 questionnaire. Participants were asked how often, on
average (never to ≥6 servings/d), during the previous year
they had consumed each food item on the FFQ. Total fruit
and vegetable intakes were calculated as the sum of intakes
of 16 and 27 items, respectively; the intake of citrus products
was calculated as the sum of intakes of oranges, orange juice,
grapefruit, and grapefruit juice. Using the food-composition
database of the USDA, we calculated the total intake of each
nutrient (i.e., flavonoids and vitamins C and E) by summing
the nutrient content for a specific amount of each food during
the previous year multiplied by a weight proportional to the
frequency of its consumption. Dietary intake collected using the
FFQ as mentioned above has been shown to be a valid estimate of
relative food and nutrient intakes when compared with multiple
diet records (31, 32). For example, the overall mean correlation
coefficient comparing intakes of 18 nutrients measured by the
FFQ and by diet record was 0.60 (32).

Lifestyle and anthropometric data were derived from the
questionnaire administered closest to the time of blood draw, with
missing information substituted from previous questionnaires.
Smoking status (never, past, or current) and number of cigarettes
smoked among current smokers were assessed biennially starting
at baseline (1976). Duration of smoking was calculated as the
difference between age at smoking initiation and current age for
current smokers and between ages at onset and cessation for past
smokers. We multiplied the number of packs of cigarettes smoked
per day by the number of years of smoking to estimate pack-years
of smoking. The number of years since cessation was obtained for
past smokers by deducting the age at which they quit smoking
from their current age.

Assessment of mtDNAcn in leukocytes in the NHS

For blood samples from the NHS participants, genomic
DNA was extracted from buffy-coat fractions using the QIAmp
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(Qiagen) 96-spin blood protocol. DNA concentrations were de-
termined via pico-green quantitation using a Molecular Devices
96-well spectrophotometer. Relative leukocyte mtDNAcn was
determined using a quantitative polymerase chain reaction–based
method. More details are shown in Supplemental Methods.

In vitro laboratory experiments

The detailed descriptions with regard to in vitro cell culture,
chemical treatment, measurements of mtDNAcn, and biomarkers
of mitochondrial biogenesis and function (e.g., mRNA and ATP
levels), as well as measurement of redox status and cellular
ROS, are provided in Supplemental Methods. Briefly, total
DNA was extracted from the human peripheral blood–derived
leukocyte cell line HL-60. The cells were grown in Roswell
Park Memorial Institute 1640 medium (Thermo Scientific, Inc.).
Naringin and NNK were added to the cultured cells for 24 h. We
used real-time polymerase chain reaction to quantify mtDNAcn.
Four genes, including nicotinamide adenine dinucleotide dehy-
drogenase subunit 1 (ND1), nicotinamide adenine dinucleotide
dehydrogenase subunit 2 (ND2), cytochrome c oxidase subunit
I (COI), and cytochrome c oxidase subunit II (COII), were used
to represent mtDNAcn (33, 34). Total RNA isolated from HL-
60 cells was used to measure mRNA levels for a mitochondrial

fusion gene, Opa1, and a mitochondrial fission gene, Drp1
(35, 36). We determined the concentrations of total glutathione
(GSH), oxidized glutathione (GSSG), NAD(P)H, lipid perox-
idation products (thiobarbituric acid reactive substances), and
intracellular peroxide (H2O2) using the previously described
methods (37–40).

Statistical analysis

Leukocyte mtDNAcn was measured in various batches over
several data sets in the NHS. To minimize the influence
of potential batch effect on mtDNAcn measurements across
different data sets, we calculated z scores of log-transformed
mtDNAcn for each sample on the basis of their relative
distribution in each data set (22). Levene’s test for homogeneity
showed statistically homogeneous distributions of the z scores
from different data sets (P = 0.99).

We calculated age-adjusted participant demographic and
lifestyle characteristics and age- and energy-adjusted nutrient
intakes across quartiles of the leukocyte mtDNAcn z score.
Spearman’s age-adjusted partial rank correlation coefficients
were calculated to examine the correlations of leukocyte mtD-
NAcn with dietary and smoking-related variables. Multivariable-
adjusted generalized linear regression models were used to evalu-
ate the associations between dietary factors, cigarette smoke, and

TABLE 1 Age-standardized characteristics at blood draw by quartiles of mitochondrial DNA copy number (z score) in 2769 women in the Nurses’ Health
Study (1990)1

Quartile 1
(n = 692)

Quartile 2
(n = 692)

Quartile 3
(n = 693)

Quartile 4
(n = 692)

Median of z score −1.10 −0.32 0.27 1.10
Age at blood draw, y 58.9 ± 6.7 58.4 ± 6.7 58.8 ± 6.9 58.5 ± 6.7
BMI at blood draw, kg/m2 25.7 ± 4.8 25.6 ± 4.8 25.5 ± 4.4 25.1 ± 4.4
Physical activity, METs/wk 14.6 ± 17.8 13.7 ± 15.9 16.1 ± 19.1 15.8 ± 18.2
Postmenopausal hormone use,2 % 47.3 47.1 41.7 45.2
Dietary factors

Total calories, kcal/d 1747 ± 490 1764 ± 501 1785 ± 521 1747 ± 495
Alcohol, g/d 5.6 ± 10.3 5.2 ± 9.3 5.2 ± 9.4 6.0 ± 10.4
Total fruit, servings/d 2.4 ± 1.5 2.5 ± 1.5 2.5 ± 1.4 2.5 ± 1.3
Whole fruit, servings/d 1.7 ± 1.3 1.7 ± 1.1 1.8 ± 1.1 1.7 ± 1.0
Fruit juices, servings/d 0.7 ± 0.7 0.7 ± 0.8 0.7 ± 0.7 0.7 ± 0.7
Citrus products, servings/d 0.8 ± 0.8 0.8 ± 0.7 0.9 ± 0.7 0.8 ± 0.7
Total vegetables, servings/d 3.9 ± 2.0 3.9 ± 1.9 4.0 ± 2.2 3.9 ± 2.0

Total flavonoids, mg/d 376 ± 380 373 ± 352 356 ± 321 361 ± 331
Flavonols, mg/d 18.9 ± 13.3 18.6 ± 12.5 18.5 ± 12.4 18.5 ± 11.9
Flavones, mg/d 1.8 ± 1.4 1.8 ± 1.4 1.8 ± 1.4 1.8 ± 1.4
Flavanones, mg/d 37.4 ± 36.9 37.7 ± 33.5 39.7 ± 35.3 40.8 ± 35.5
Flavan-3-ols, mg/d 59.8 ± 85.6 59.2 ± 78.8 54.1 ± 70.6 55.6 ± 73.4
Anthocyanidins, mg/d 11.1 ± 14.7 10.3 ± 11.7 10.0 ± 10.4 10.5 ± 11.6
Vitamin C, mg/d 330.8 ± 382.1 313.1 ± 343.8 319.7 ± 333.9 322.6 ± 371.2
Vitamin E, mg/d 72.7 ± 159.5 79.3 ± 179.0 81.4 ± 177.0 87.2 ± 193.2

Cigarette smoking
Never smoker, % 41.6 40.4 46.9 44.4
Past smoker, % 36.0 38.4 39.7 39.8
Current smoker, % 22.4 21.2 13.4 15.7
Pack-years3 28.8 (21.5) 28.4 (21.6) 24.4 (21.1) 25.0 (21.3)
Smoking duration,3 y 27.1 (12.6) 26.6 (13.1) 23.9 (12.5) 24.8 (13.0)
Smoking cessation,4 y 14.9 (11.3) 16.0 (11.2) 16.7 (10.7) 16.4 (10.7)

1Values are means ± SDs or percentages and are standardized to the age distribution of the study population. MET, metabolic equivalent task.
2Among postmenopausal women.
3Among ever smokers.
4 Among past smokers.
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leukocyte mtDNAcn, controlling for a range of covariates. We
calculated least-squares mean leukoctye mtDNAcn z scores over
categories of dietary factors and cigarette smoke with adjustment
for the same covariates. We tested for linear trend across quartiles
for a given continuous variable by assigning median values for
these quartiles and treating the new variable as a continuous term
in the models. Bonferroni correction for P values was applied
for multiple comparisons for individual food item, nutrient, and
smoking variables, and was calculated as 0.05/n (n = 6, 8,
and 3, respectively). We also examined the potential interaction
between fruit consumption and smoking by adding a cross-
product interaction term in the model with the main effects of
these 2 variables.

For data obtained from the in vitro experiments, Wilcoxon’s
rank-sum test was used to examine the difference between the
treatment group and control group. All of the analyses were
performed using SAS 9.2 software, and significance was set at
P < 0.05 (2-sided).

Results

Participant characteristics

Table 1 shows the descriptive characteristics of the 2769
women according to leukocyte mtDNAcn quartiles. Leukocyte
mtDNAcn z-score quartiles were generally similar with respect to
age and total calorie intake, whereas there were decreasing trends
in the proportion of current smokers, pack-years of smoking,
and smoking duration and increasing trends in smoking cessation
and intakes of total fruit and flavanones across the leukocyte
mtDNAcn quartiles. Conversely, there was an increasing trend
in leukocyte mtDNAcn z score across the total fruit consumption
quartiles (Supplemental Table 1).

Correlations between dietary factors, cigarette smoke, and
leukocyte mtDNAcn

Age-adjusted Spearman correlation analyses showed modest
but significant positive correlations between leukocyte mtDNAcn
and the consumption of total fruit, whole fruit, citrus products,
flavones, and flavanones (Table 2). Leukocyte mtDNAcn was
also negatively correlated with pack-years of smoking and
smoking duration among ever smokers. After correction for
multiple comparisons, the significant correlations remained for
total fruit, whole fruit, flavanones, pack-years of smoking, and
smoking duration.

Associations between dietary factors, cigarette smoke, and
leukocyte mtDNAcn

We found a significant positive association between total fruit
consumption and leukocyte mtDNAcn in the model adjusting
for age, smoking, and other dietary and lifestyle factors (P-
trend = 0.02; Table 3). Interestingly, this association between
total fruit and leukocyte mtDNAcn z score appeared to be
driven by whole fruit (P-trend = 0.005) but not fruit juices,
and only whole fruit remained significant after correction for
multiple comparisons. Among dietary nutrients, the intake of
flavanones was significantly and positively associated with
leukocyte mtDNAcn (P-trend = 0.02), and the major food source

TABLE 2 Age-adjusted Spearman correlations between dietary factors,
cigarette smoking, and mitochondrial DNA copy number (z score) in 2769
women in the Nurses’ Health Study

Correlation
coefficient Nominal P

Food items
Total fruit 0.05 0.0061

Whole fruit 0.06 0.0041

Fruit juices 0.02 0.22
Citrus products 0.05 0.009
Total vegetables 0.01 0.67

Nutrients
Total flavonoids 0.01 0.71
Flavonols 0.01 0.74
Flavones 0.04 0.02
Flavanones 0.06 0.0031

Flavan-3-ols − 0.001 0.98
Anthocyanidins 0.01 0.47

Vitamin C 0.02 0.40
Vitamin E 0.01 0.60
Cigarette smoking

Pack-years2 − 0.08 0.0021

Smoking duration,2 y − 0.08 0.0021

Smoking cessation,3 y 0.05 0.08

1Significant after correction for multiple comparisons: P < 0.008,
0.006, and 0.017 for food items, nutrients, and smoking variables,
respectively.

2Among ever smokers.
3Among past smokers.

of flavanones, citrus products, was also positively associated with
leukocyte mtDNAcn (P-trend = 0.04). Individual fruit items,
however, showed less-consistent associations with leukocyte
mtDNAcn and lost significance after the correction for multiple
comparisons (Supplemental Table 2).

We found a generally consistent association pattern for
smoking-related variables and leukocyte mtDNAcn z score
(Table 4). Pack-years of smoking and smoking duration were
significantly and inversely associated with leukocyte mtDNAcn z
score (P-trend = 0.01 and 0.007, respectively), but only smoking
duration remained significant after correction for multiple
comparisons. There was no significant interaction between fruit
consumption and smoking for their potential effects on mtDNAcn
(data not shown).

In vitro experiments for dietary antioxidants, cigarette
smoke, and leukocyte mtDNAcn

To provide an insight into the nature of the associations
reported herein, we examined the direct beneficial effect of
naringin, a major flavanone in citrus fruit, on mtDNAcn in the
human peripheral blood–derived leukocyte cell line HL-60. Our
results showed that naringin treatment resulted in a marked
increase in mtDNAcn (Figure 1A) as well as mitochondrial
biogenesis and function (Supplemental Figure 2A) compared
with that in control cells. The positive association of naringin with
mtDNAcn correlated with redox status and subsequent intracellu-
lar ROS production of the cells. As shown in Figure 2A, naringin
significantly improved the cellular redox status as reflected by
increases in GSH and NAD(P)H levels and decreased levels of
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TABLE 3 Least-squares means of mitochondrial DNA copy number (z score) according to dietary factors in 2769 women in the Nurses’ Health Study1

Quartile 1 Quartile 2 Quartile 3 Quartile 4
Nominal
P- trendMean ± SE P Mean ± SE P Mean ± SE P Mean ± SE P

Food items
Total fruit − 0.09 ± 0.05 Ref 0.02 ± 0.04 0.04 0.005 ± 0.04 0.09 0.07 ± 0.05 0.01 0.02
Whole fruit − 0.06 ± 0.05 Ref − 0.05 ± 0.04 0.79 0.02 ± 0.04 0.16 0.09 ± 0.05 0.01 0.0052

Fruit juices − 0.002 ± 0.04 Ref − 0.07 ± 0.05 0.23 0.03 ± 0.04 0.56 0.03 ± 0.04 0.58 0.16
Citrus products − 0.11 ± 0.04 Ref 0.05 ± 0.04 0.004 0.01 ± 0.04 0.04 0.04 ± 0.04 0.01 0.04
Total vegetables 0.01 ± 0.05 Ref − 0.05 ± 0.04 0.30 0.04 ± 0.04 0.49 − 0.002 ± 0.05 0.89 0.76

Nutrients
Total flavonoids − 0.02 ± 0.04 Ref 0.04 ± 0.04 0.22 0.003 ± 0.04 0.61 − 0.02 ± 0.04 0.94 0.62
Flavonols − 0.03 ± 0.04 Ref 0.01 ± 0.04 0.47 0.05 ± 0.04 0.17 − 0.03 ± 0.04 0.91 0.71
Flavones − 0.09 ± 0.04 Ref 0.02 ± 0.04 0.05 0.05 ± 0.04 0.01 0.01 ± 0.04 0.06 0.09
Flavanones − 0.06 ± 0.04 Ref − 0.01 ± 0.04 0.35 − 0.002 ± 0.04 0.27 0.07 ± 0.04 0.02 0.02
Flavan-3-ols − 0.001 ± 0.04 Ref 0.02 ± 0.04 0.64 0.002 ± 0.04 0.97 − 0.03 ± 0.04 0.63 0.42
Anthocyanidins − 0.04 ± 0.04 Ref 0.01 ± 0.04 0.41 0.05 ± 0.04 0.13 − 0.03 ± 0.04 0.85 0.99
Vitamin C, mg/d − 0.04 ± 0.04 Ref − 0.003 ± 0.04 0.55 0.06 ± 0.04 0.07 − 0.03 ± 0.04 0.89 0.65
Vitamin E, IU/d − 0.004 ± 0.05 Ref − 0.02 ± 0.04 0.74 − 0.01 ± 0.04 0.90 0.04 ± 0.04 0.45 0.26

1Generalized linear regression models with adjustment for age at blood draw, pack-years of smoking, menopausal status, postmenopausal hormone use,
BMI, physical activity, and intakes of total calories and alcohol were used. Ref, reference.

2Significant after correction for multiple comparisons: P < 0.008 and 0.006 for food items and nutrients, respectively.

lipid peroxidation (thiobarbituric acid reactive substances), an
indicative marker of cellular oxidative stress, compared with that
in control cells, which consequently led to a substantial reduction
in cellular ROS generation.

In contrast, a substantial decrease in mtDNAcn (Figure 1B),
consistent with defective mitochondrial biogenesis and impaired
mitochondrial function (Supplemental Figure 2B), was ob-
served in comparison to the control when the leukocytes were

exposed to NNK, the key carcinogenic ingredient of cigarette
smoke. Furthermore, the results in Figure 2B showed that
exposure of the cells to NNK led to an impairment in the
cellular redox status compared with that in the control in
parallel with excessive production of intracellular ROS and ROS-
related oxidative stress, indicating the causal relation between the
cellular-redox imbalance and the decrease in mtDNAcn induced
by NNK exposure.

TABLE 4 Least-squares means of mitochondrial DNA copy number (z score) according to cigarette smoking in 2769 women in the Nurses’ Health Study1

Mean ± SE P
Nominal
P-trend

Smoking status —
Never 0.03 ± 0.04 Ref
Past 0.03 ± 0.04 0.93
Current: 1–24 cigarettes/d − 0.17 ± 0.06 0.001
Current: ≥25 cigarettes/d − 0.11 ± 0.09 0.12

Pack-years 0.01
Never 0.03 ± 0.04 Ref
1–15 0.06 ± 0.05 0.60
16–30 − 0.11 ± 0.06 0.02
>30 − 0.06 ± 0.05 0.05

Smoking duration, y 0.0072

Never 0.04 ± 0.04 Ref
1–15 0.06 ± 0.05 0.64
16–30 − 0.002 ± 0.05 0.49
>30 − 0.10 ± 0.05 0.007

Smoking cessation,3 y 0.74
Never 0.03 ± 0.04 Ref
>30 0.001 ± 0.05 0.65
16–30 0.07 ± 0.05 0.42
1–15 − 0.05 ± 0.10 0.45

1Generalized linear regression models with adjustment for age at blood draw, menopausal status, postmenopausal hormone use, BMI, physical activity,
and intakes of total calories, alcohol, and whole fruit were used. Ref, reference.

2Significant after correction for multiple comparisons, P < 0.017.
3Never smokers were excluded from the trend test.
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FIGURE 1 Effect of naringin and NNK on mtDNAcn in HL-60 cells.
Cells were treated with 100 μM naringin (A) or 200 μM NNK (B) for 24 h,
and the relative mtDNAcn was analyzed by quantitative real-time PCR with
a specific primer against mtDNA and β-actin, as described in Methods. The
mtDNA genes ND1, ND2, COI, and COII were used to represent mtDNAcn.
Values are means ± SDs from 3 independent experiments. ∗Different from
control, P < 0.05 (Wilcoxon’s rank-sum test). COI, cytochrome c oxidase
subunit I; COII, cytochrome c oxidase subunit II; mtDNAcn, mitochondrial
DNA copy number; ND1, nicotinamide adenine dinucleotide dehydroge-
nase subunit 1; ND2, nicotinamide adenine dinucleotide dehydrogenase
subunit 2; NNK, nicotine-derived nitrosamine ketone; PCR, polymerase
chain reaction.

Discussion
On the basis of detailed data on 2769 healthy women from a

well-characterized cohort, our study provided a comprehensive
evaluation of the association between fruit and vegetables, dietary
antioxidants, and cigarette smoke and leukocyte mtDNAcn, a
potential biomarker of oxidative stress–related clinical outcomes.
Our study found that fruit consumption was positively associ-
ated with leukocyte mtDNAcn, whereas cigarette smoke was
inversely associated with leukocyte mtDNAcn. In addition, the
consumption of whole fruit and the intake of flavanones were both
positively associated with leukocyte mtDNAcn. These findings
observed in NHS participants are supported by in vitro cell-based
experiments showing that exposure to a major flavanone in the
fruit (i.e., naringin) could result in an increase in mtDNAcn in
human peripheral blood–derived leukocytes, whereas exposure
to a key carcinogenic ingredient of cigarette smoke, specifically
NNK, could cause a decrease in mtDNAcn of the cells. Moreover,
our in vitro studies showed that alterations in mtDNAcn were
functionally linked to the modulation of mitochondrial biogenesis
and function in leukocytes.

Oxidative stress is characterized by the presence of a large
number of ROS such as superoxide anions and hydroxyl radicals,
which can be generated by cigarette smoke (41). Cigarette
smoke can release multiple toxic compounds to cause a series
of cellular abnormalities, including DNA damage, inflammation,
and oxidative stress (42). Mitochondria are sensitive to oxidative
stress and cannot remove or repair DNA damage caused to them
by ROS. To compensate for this damage, healthy mitochondria

increase their DNA copy number in response to trans-acting
factors (i.e., potential factors that regulate the replication
and transcription of mtDNA and the processing of mtRNA)
encoded by nuclear DNA (8, 43). However, extensive oxidative
stress may surpass mitochondrial capacity to compensate for
oxidative damage and reduce mtDNA content. A previous
human study determined that, compared with nonsmokers, the
mtDNA content in the lung tissue of light smokers was slightly
higher but among heavy smokers was significantly lower (6).
In support of this, an animal study also found that perinatal
environmental tobacco smoke exposure resulted in significantly
increased oxidative stress and mitochondrial dysfunction and
damage, which were accompanied by significantly decreased
mitochondrial antioxidant capacity and mtDNAcn in vascular
tissue along with increased mitochondrial damage in buffy-coat
tissues in nonhuman primates (7).

Smoking is a risk factor for a wide range of clinical
conditions, including cardiovascular disease (26), diabetes (44),
metabolic syndrome (45), chronic kidney disease (46), and
neurodegenerative disease (47); and smoking-related oxidative
stress has been implicated in the pathogenesis of many of these
diseases (26, 42, 48). As a promising biomarker of oxidative
stress, alterations in leukocyte mtDNAcn have been associated
with increased risk of a range of adverse clinical outcomes (16,
17, 19, 20, 49, 50). Our study provides a relatively comprehensive
evaluation of the association between smoking and leukocyte
mtDNAcn using detailed information on smoking status, pack-
years of smoking, smoking duration, and smoking cessation
and found generally consistent negative correlations and inverse
associations between these smoking measures and leukocyte
mtDNAcn. Pending further investigation, our results add to the
promise of leukocyte mtDNAcn as a biomarker for smoking-
related clinical outcomes.

We also found a positive association of leukocyte mtDNAcn
with fruit consumption but not with vegetable consumption,
suggesting that some fruit-specific antioxidants may play a
role. This is consistent with the finding that the intake of
flavanones, a group of antioxidant phytochemicals that are
abundant in citrus products (25), was significantly and positively
associated with leukocyte mtDNAcn. In support of this, we
also found a positive association between the consumption of
citrus products and leukocyte mtDNAcn. Citrus flavanones have
been shown to elicit substantial antioxidant effects (25, 51), and
the consumption of citrus products can reduce oxidative stress
levels (52). However, the association between fruit consumption
and leukocyte mtDNAcn was driven by whole fruit but not
fruit juice in our study. The null association between fruit juice
consumption and leukocyte mtDNAcn may relate to the lower
amounts of antioxidant phytochemicals. For example, different
juice-processing techniques have been shown to influence the
contents of beneficial phytochemicals in fresh fruit (53).

To provide a mechanistic foundation for the potential
association between fruit consumption and cigarette smoke
and leukocyte mtDNAcn, the human peripheral blood–derived
leukocyte cell line HL-60 was treated with naringin and
NNK, the major flavanone in the citrus species and the major
ingredient of tobacco-specific nitrosamines, respectively. The
results showed that leukocyte mtDNAcn was markedly increased
after the administration of naringin, whereas exposure to NNK
led to a significant decrease in mtDNAcn in comparison to
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FIGURE 2 Effect of naringin and NNK on intracellular ROS in the leukocytes. The ratio of GSSG compared with total GSH concentration, ratio of
NAD(P)H compared with total NAD(P) concentration, TBARS assay for assessment of lipid peroxidation products, and intracellular peroxide production were
measured in the HL-60 cells after the treatment with 100 μM naringin (A) or 200 μM NNK (B) for 24 h. Values represent the fold change over the levels
observed in the control and are shown as means ± SDs of 3 independent experiments. ∗Different from control, P < 0.05 (Wilcoxon’s rank-sum test). GSH,
glutathione; GSHt, total glutathione; GSSG, oxidized glutathione; H2O2, intracellular peroxide; NADPt, total NAD(P); NNK, nicotine-derived nitrosamine
ketone; ROS, reactive oxygen species; TBARS, thiobarbituric acid reactive substance.

normal cells, providing evidence for the association between
fruit consumption, cigarette smoke, and mtDNAcn identified in
the NHS participants. In particular, the data clearly indicated
that cellular ROS play a pivotal role at the interface between
fruit consumption, cigarette smoke, and mtDNAcn. These in
vitro experimental results further strengthen the validity of our
population-based epidemiologic findings.

Our study has several strengths, including detailed information
on dietary factors, cigarette smoke, and other covariates;
the health care background of the participants; and mutual
confirmation of population and laboratory data. Nevertheless, our
study also has several limitations. First, the population-based part
of the study has a cross-sectional design and thus does not support
causal inference. Nevertheless, results of in vitro experiments
support the major findings from the population-based analyses.
Second, there is the possibility of unmeasured confounding due
to other potential factors that could affect the oxidative stress,
although we controlled for a number of dietary and lifestyle
factors in the data analysis. Third, we were not able to measure
biomarkers of oxidative stress in our study participants and
therefore are unsure if the level of mtDNAcn was correlated
with the level of oxidative stress appropriately. However, in
our previous study using the same study population, we found
that mtDNAcn was strongly positively correlated with telomere
length, another biomarker of peripheral blood leukocytes related
to oxidative stress (22), which supports the validity of mtDNAcn
measured in our study. Fourth, our study participants were
exclusively white women, and therefore the findings may not be
generalizable to men or other ethnicities. However, restricting
the sample to white female health professionals also reduces the
possibility of introducing confounding related to socioeconomic
status, which is common in multiethnic studies.

In conclusion, our study suggests that fruit consumption is
associated with higher leukocyte mtDNAcn, whereas cigarette
smoke is associated with lower leukocyte mtDNAcn. Flavanones,
a group of antioxidant phytochemicals abundant in citrus
products, may be the key factor behind the association between
fruit consumption and mtDNAcn, which is supported by the in
vitro experiments showing the alterations in leukocyte mtDNAcn
accompanied by relevant changes in mitochondrial biogenesis
and function in human peripheral blood–derived leukocytes.
This study provides the first evidence, to our knowledge, that
fruit consumption and cigarette smoke may affect the levels
of leukocyte mtDNAcn, a promising biomarker for oxidative
stress–related clinical outcomes. The results further support the
benefits of fruit consumption in promoting health and the adverse
impact of cigarette smoke. Additional prospective studies are
warranted to investigate the significance of leukocyte mtDNAcn
as a biomarker of oxidative stress–related clinical outcomes
in different populations, and future experimental studies are
also warranted to further elucidate the underlying mechanism
and signaling pathway involved in the relations between fruit
consumption, cigarette smoke, and mtDNAcn as reported herein.
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